HDR Defense: “Contribution to the uplink PHY/MAC analysis for the IoT and BAN applications” by Claire GOURSAUD, 1/12 at 10:30, INSA de Lyon (Amphi Chappe).


  • Pr Philippe CIBLAT, Telecom Paris Tech, Université de Paris-Saclay (reviewer)
  • Pr Mischa DOHLER, King’s College London (reviewer)
  • Pr Visa KOIVUNEN, Aalto University (reviewer)
  • Pr Inbar FIJALKOW, Université Paris Seine, Université Cergy Pontoise
  • Pr André-Luc BEYLOT, Toulouse INP
  • Pr Isabelle GUERIN LASSOUS, Université Claude Bernard – Lyon 1
  • Pr Jean-Marie GORCE, INSA Lyon


My research activities are focused on the uplink in Wireless Sensor Networks, BAN, and IoT networks.
In particular, I have focused on the joint study of the PHY and MAC layers, so as to improve the network perfomance. The main hypothesis of my work is that no resources are to be spent for channel estimation or access protocol organization. The data transmission has thus to be performed such as the receiver is able to take advantage of all diversity at disposal, either introduced by the source, any relaying node, or intrinsic diversity.

In the first part, WBAN (Wireless Body Area Networks) are considered. Measurements campaigns have been conducted to create a data set with correlated channel conditions within a BAN, and among several BANs. With these data, we have proposed and evaluated dedicated frame constructions, when localization is performed with 3WR (3 Way Ranging) protocol using UWB (Ultra Wide Band). Such protocol, designed for static nodes, suffers from the intrinsic mobility of WBAN nodes. The challenge was thus to propose a strategy to ensure distance accuracy, position accuracy, and good positioning success probability, even though no channel information is available prior to the transmission. We have also theoretically evaluated how to optimally distribute the available power among a node and a potential relay.

Furthermore, we have considered IoT applications. Within this context, Fountain Codes and intraflow Network Coding were first studied to improve the transmission reliability. Secondly, the specific interference pattern observed in UNB (Ultra Narrow Band) transmission such as in SigFox network was also considered. In this context, the objective is to take advantage of all available diversity in the signal (temporal, spectral, signal strength, multi-receiver, …) to improve the system performance.

These aforementioned challenges are addressed in this HdR dissertation manuscript. I exposed the solutions we proposed during this last decade and the related obtained results through theoretical analysis, simulation and/or experimentation; as well as other potential directions.

CITI Talk: From 5G Towards the Internet of Skills – Mischa Dohler (King’s College London, UK) – 1/12 at 9am, Amphi Chappe

Abstract: Underpinned by latest developments in ultra-reliable low-latency 5G, we are able to design a fully immersive next-generation internet. This new internet, the “Internet of Skills”, will allow transmitting physical skills digitally. This talk will explore latest developments in 5G as well as the industry and societal applications thereof.


CITI Talk: Spectrum sharing and co-exististence of radar and communication systems – ​​Visa Koivunen (Aalto University, Finland​) – 30/11​ at​ 4pm, Amphi Chappe

Abstract: The coexistence of radar and communication has received a lot of attention from the research community in the recent years due to a considerable number of wireless systems that share the same spectral band, e.g.,  LTE, 5G, WiFi and S-band radars. In a plain coexistence scenario, each system tries to mitigate the interference from the other one. In a co-operative scenario, there is some exchange of information between the two systems, for example, channel state or interference awareness. In this talk, waveform optimization methods for target detection and parameter estimation are presented in a co-operative scenario. Mutual Information, and channel and interference awareness are exploited in optimization. Generalized multicarrier waveform model is employed in the radar system. Additional constraints on the waveform properties are imposed. In target parameter estimation, the objective function maximizes the Fischer Information (or minimizes CRB). Simulation examples of optimizing waveforms for target detection and parameter are provided. Time allowing, precoder-decoder design approach employing interference alignment is presented for co-existing radar and communication system.