CITI seminar – Jérôme Nika (Ircam) – 4/7 at 10:00

Title: Technologies génératives pour la création musicale : composer à l’échelle du comportement ou de la narration.

Date and Place: 10h Monday 4/7/2022 in TD-C

Speaker: Jérôme Nika (Ircam)

Hosts: Romain Michon and Tanguy Risset (Emeraude project-team)

 

Abstract: 

Une machine sera-t-elle bientôt capable de remplacer l’humain dans la création musicale ? Pour toute une partie des artisans de l’intelligence artificielle appliquée à la musique, artistes comme scientifiques, il est difficile de répondre à cette question récurrente car ce n’est pas celle qui se pose. En effet, si on “apprend” la musique à des ordinateurs dotés d’une “mémoire” musicale inspirée de la cognition humaine, l’enjeu réside précisément dans le fait de partir de ces modèles pour explorer la production d’une musique nouvelle plutôt que la reproduction d’une musique crédible.

Les recherches associées au sein de l’équipe Représentations Musicales de l’Ircam s’articulent autour de la notion de « mémoire musicale » : son apprentissage, sa modélisation, et sa mobilisation dans un contexte créatif. Elles ont donné naissance à DYCI2lib, une librairie d’agents génératifs pour la performance et la composition musicale combinant les approches libres, planifiées et spécifiées, et réactives de la génération à partir d’un corpus. Ces travaux ont été mis en oeuvres dans le cadre de nombreuses collaborations artistiques et productions musicales, notamment dans le jazz et les musiques improvisées (Steve Lehman, Bernard Lubat, Benoît Delbecq, Rémi Fox, Orchestre National de Jazz), la musique contemporaine (Pascal Dusapin, Ensemble Modern, Alexandros Markeas, Marta Gentilucci), et l’art contemporain (Le Fresnoy – Studio National des Arts Contemporains, Vir Andres Hera) La présentation des pratiques musicales permises par ces instruments génératifs au service de la créativité humaine sera illustrée par des extraits de ces productions récentes.

 

Bio:

Jérôme Nika est chercheur en technologies génératives pour la création musicale, réalisateur en informatique musicale, et musicien. Diplômé des écoles ENSTA ParisTech et Télécom ParisTech ainsi que du master ATIAM (Acoustique, Traitement du signal, Informatique, Appliqués à la Musique – Sorbonne Université / Ircam / Télécom ParisTech), il a également étudié la composition musicale. Il s’est spécialisé dans l’application de l’informatique et du traitement du signal à la création numérique et à la musique à travers un doctorat (« Prix Jeune Chercheur Science/Musique 2015 », « Prix Jeune Chercheur 2016 », Association Française d’Informatique Musicale) puis en tant que chercheur à l’Ircam (Institut de Recherche et Coordination Acoustique/Musique).

En 2019, il entre au Fresnoy – Studio National des Arts Contemporain en tant que chercheur invité. Cette même année, il travaille sur 3 projets : le projet évolutif Lullaby Experience, du compositeur Pascal Dusapin et deux projets de musique improvisée : Silver Lake Studies en duo avec Steve Lehman et C’est pour ça en duo avec Rémi Fox (projet lauréat de l’aide DICRéAM du CNC pour 2020) .

En 2020, il devient chercheur permanent dans l’équipe Représentations Musicales de l’Ircam où il développe des instruments logiciels en interaction avec des musiciens experts. Plus de 60 concerts et performances artistiques ont mis ces outils en jeu depuis 2016 (Onassis Center, Athènes, Grèce; Ars Electronica Festival, Linz, Autriche; Frankfurter Positionen festival, Frankfurt; Annenberg Center, Philadelphia, USA; Centre Pompidou, Collège de France, LeCentquatre, Paris, France; Montreux Jazz festival, etc.). La dernière production en date, pour laquelle il crée l’électronique générative est le concert “Ex Machina”, une collaboration entre Steve Lehman, Frédéric Maurin, et l’Orchestre National de Jazz, créé le 11 février 2022 à la Maison de la Radio et diffusé sur France Musique.

 


PhD Defence: “User Association in Flexible and Agile Mobile Networks”, Romain PUJOL, amphi, Chappe Building, 6th of July 2022 at 2 PM

 

The defense will take place on Wenesday, July 6 at 2 pm, in the amphitheatre of the Telecommunications Department (Claude Chappe building), INSA Lyon, Villeurbanne.

The presentation will be available online: https://insa-lyon-fr.zoom.us/j/91599742042

 

Title

User Association in Flexible and Agile Mobile Networks

 

 

Abstract

The user association process in cellular networks consists in choosing the base station with which the user equipment will negotiate radio resources. The current association is based on measuring the signal strength received by the user equipment from each of the base stations. The association must now deal with the diversification of user application needs and the growing heterogeneity of cellular networks.

 

In this thesis, we show experimentally that the current association process has reached its limits, that it is agnostic of the configurations of the base stations and that it does not allow to control the throughput that the user equipment will obtain following the association. We set up for the realization of our measurements an experimental platform based on the software suite of cellular networks srsRAN and software radios USRP NI-2091.

 

We propose in this thesis a new metric to be used during the association process. This metric, broadcasted by the base station, is a load information which in our case will be represented by the number of user equipment connected to the base station. We also discuss other metrics that can be used as load information. We show, once again experimentally, by modifying the source code of the srsRAN software suite ourselves, that if the user equipment takes this load information into account in the association process, the association decision is improved in 22% of cases.

 

Jury

  • Tara ALI YAHIA, Associate Professor HDR, Université Paris Saclay (Reviewer)
  • Vania CONAN, HDR, Thales (Reviewer)
  • Véronique VEQUE, Professor, Université Paris Saclay (Examiner)
  • Frédéric LAUNAY, Associate Professor, IUT de Poitiers (Examiner)
  • Stéphane FRENOT, Professor, INSA-Lyon (Examiner)
  • André-Luc BEYLOT, Professor, ENSEEIHT (Examiner)
  • Fabrice VALOIS, Professor, INSA-Lyon (Thesis supervisor)
  • Razvan STANICA, Associate Professor HDR, INSA-Lyon (Thesis co-supervisor)

PhD Defence: “Activity Models and Bayesian Estimation Algorithms for Wireless Grant-Free Random Access”, Lélio CHETOT, amphi, Chappe Building, 7th of July 2022 at 2 PM

 

The defense will take place on Thursday, July 7 at 2 pm, in the amphitheatre of the Telecommunications Department (Claude Chappe building), INSA Lyon, Villeurbanne.

The presentation will be available online: https://youtu.be/hX3t9pKPcoc

 

Title

Activity Models and Bayesian Estimation Algorithms for Wireless Grant-Free Random Access

 

 

Abstract

The new 5G’s wireless networks have recently started to be deployed all around the world. With them, a large spectrum of services are about to emerge, resulting in new stringent requirements so that 5G targets performance exceed that of 4G by a factor of 10. The services are centered around the use cases of enhanced mobile broadband (eMBB), ultra reliable and low-latency communication (uRLLC) and massive machine-type communication (mMTC) where each of which has required the ongoing development of key new technologies. Many of these technologies will also play an important role in the emergence of 6G.

In this thesis, the focus is on grant-free RA (GFRA) as an enabler of uRLLC and mMTC. GFRA is a new protocol introduced in 5G new radio (5G-NR) for reducing the data overhead of the random access (RA) procedure. This results in a significant reduction in the latencies of the user equipments (UEs) access to a connected medium via an access point (AP). Achieving efficient GFRA is of key importance for many 5G applications, e.g. for large scale internet of things (IoT) wireless networks. The study of new non-orthogonal multiple access (NOMA) signal processing techniques is then considered. Using tools from the theory of compressed sensing (CS), and particularly from Bayesian CS, new algorithms within the family of approximate message passing (AMP) are developed to address the joint active user detection and channel estimation (AUDaCE) problem. The active user detection is crucial to properly identify transmitting UEs within the context of large-scale dense network; the channel estimation is equally important so that an AP can reliably transmit back data to the detected UEs.

In this thesis, in contrast to existing work on this topic, the AUDaCE is studied for wireless networks where the activity of the UEs is assumed to be correlated, as is typical for many large-scale dense networks. To this end, two new activity models are introduced. The first one assumes that the activity of the UEs in the network can be modeled via group-homogeneous activity (GHomA) where devices in the same group have common pairwise correlations and marginal activity probabilities. The second model accounts for more general dependence structure via group-heterogeneous activity (GHetA). Novel approximate message passing algorithms within the hybrid GAMP (HGAMP) framework are developed for each of the models. With the aid of latent variables associated to each group for modeling the activity probabilities of the UEs, the GHomA-HGAMP algorithm can perform AUDaCE for GFRA leveraging such a group homogeneity. When the activity is heterogenous, i.e. each UE is associated with a latent variable modeling its activity probability correlated with the other variables, it is possible to develop GHetA-HGAMP using the copula theory.

Extensive numerical studies are performed, which highlight significant performance improvements of GHomA-HGAMP and GHetA-HGAMP over existing algorithms (modified generalized AMP (GAMP) and group-sparse HGAMP (GS-HGAMP)), which do not properly account for correlation in activity. In particular, the channel estimation and active user detection capability are enhanced in many scenarios with up to a 4dB improvement with twice less user errors.

As a whole, this thesis provides a systematic approach to AUDaCE for wireless networks with correlated activities using tools from Bayesian CS. We then conclude by showing how it could be used for multi-carrier orthogonal frequency division multiplexing (OFDM) scenarios with possible extensions for grant-free (GF) data transmission leveraging joint data recovery, active user detection and channel estimation (DrAUDaCE).

 

Jury

  • Catherine DOUILLARD, Professor @ IMT Atlantique, Reviewer
  • Dejan VUKOBRATOVIC, Professor @ Univ. Novi Sad, Reviewer
  • Aline ROUMI, Senior Research Scientist @ INRIA Rennes, Examiner
  • Philippe CIBLAT, Professor @ Telecom Paris, Examiner
  • Cedomir STEFANOVIC, Professor @ Univ. Aalborg, Examiner
  • Jean-Marie GORCE, Professor @ INSA Lyon, Director
  • Malcolm EGAN, Research Scientist @ INRIA Lyon, Supervisore