Abstract
As part of the internet of things (IoT), the number of sensor nodes that wish to communicate with each other has exploded and is expected to further increase dramatically. Such an increase of communication devices inherently leads to involved communication and hypothesis testing scenarios, and thus calls for new coding and testing strategies. The talk presents new strategies and corresponding error exponents for different network scenarios, and it proves information-theoretic optimality of the proposed strategies in some cases. Special attention is given to scenarios where information collected at a sensor is desired at multiple decision centres and where communication is multi-hop involving sensor nodes as relays. In these networks, sensors generally compete for network resources, and relay sensors can process received information with sensed information or forward intermediate decisions to other nodes. Depending on the studied error exponents, some of these intermediate decisions require special protection mechanisms when sent over the network. The talk is based on joint work with Sadaf Salehkalaibar, Roy Timo, and Ligong Wang.