PhD Defense: “How to operate IoT networks with contracts of quality of service (Service Level Agreements)”, by Guillaume Gaillard, on 19th December

The defense will take place on Monday 19th December at 10:00 in the Chappe Amphitheater, Claude Chappe building, INSA Lyon.
The presentation will be held in French with slides in English.



Thierry TURLETTI, Inria- Sophia Antipolis
Pascale MINET, Inria- Paris


Pascal THUBERT, Cisco Systems
Philippe OWEZARSKI, CNRS- Toulouse
Isabelle GUÉRIN-LASSOUS, Lyon 1 University


Dominique BARTHEL, Orange Labs- Meylan
Fabrice VALOIS, INSA Lyon
Fabrice Theoleyre, CNRS- ICube

This thesis work has been done in collaboration between Orange Labs, INSA Lyon, ICube, and Inria UrbaNet in the CITI Lab.


With the growing use of distributed wireless technologies for modern services, the deployments of dedicated radio infrastructures do not enable to ensure large-scale, low-cost and reliable communications. This PhD research work aims at enabling an operator to deploy a radio network infrastructure for several client applications, hence forming the Internet of Things (IoT).
We evaluate the benefits earned by sharing an architecture among different traffic flows, in order to reduce the costs of deployment, obtaining a wide coverage through efficient use of the capacity on the network nodes. We thus need to ensure a differentiated Quality of Service (QoS) for the flows of each application.
We propose to specify QoS contracts, namely Service Level Agreements (SLAs), in the context of the IoT. SLAs include specific Key Performance Indicators (KPIs), such as the transit time and the delivery ratio, concerning connected devices that are geographically distributed in the environment. The operator agrees with each client on the sources and amount of traffic for which the performance is guaranteed. Secondly, we describe the features needed to implement SLAs on the operated network, and we organize them into an SLA management architecture.
We consider the admission of new flows, the analysis of current performance and the configuration of the operator’s relays.
Based on a robust, multi-hop technology, IEEE Std 802.15.4-2015 on TSCH mode, we provide two essential elements to implement the SLAs: a mechanism for the monitoring of the KPIs, and KAUSA, a resource allocation algorithm with multi-flow QoS constraints. The former uses existing data frames as a transport medium to reduce the overhead in terms of communication resources. We compare different piggybacking strategies to find a tradeoff between the performance and the efficiency of the monitoring. With the latter, KAUSA, we dedicate adjusted time-frequency resources for each message, hop by hop. KAUSA takes into account the interference, the reliability of radio links and the expected load to improve the distribution of allocated resources and prolong the network lifetime. We show the gains and the validity of our contributions with a simulation based on realistic traffic scenarios and requirements.
Keywords: Quality of Service, Wireless Sensor Networks, Multi-hop, Internet of Things, Service Level Agreement, Key Performance Indicators, Reliability, Network Management, Network Monitoring, Scheduling, 6TiSCH


HDR Defense: “Complexity of Ambient Software: from Composition to Distributed, Contextual, Autonomous, Large-scale Execution”, by Frédéric Le Mouël, on 28th November

The defense will take place on Monday 28th November at 10:00 in the Chappe amphitheatre, Chappe Building, INSA Lyon.



Pr Thierry DELOT, Valenciennes University
Pr Michel RIVEILL, Nice Sophia Antipolis University


Pr Isabelle GUÉRIN LASSOUS, Claude Bernard Lyon 1 University
Pr Fabrice VALOIS, INSA de Lyon
MCF Philippe ROOSE, Pau et Pays de l’Adour University


Combined with the development of middleware in the 1990-2000, the Ambient Intelligence has shaped the 2020 scenarios. With a growing number of devices, smartphones, sensors, connected watches, glasses, etc., these scenarios however suffer. With increasing constraints of energy consumption, size and mobility, the deployment, management and programming of these environments have become greatly complex. Middleware present good properties of abstraction – allowing modularity and an efficient reuse – and interconnection – allowing openness and safety of systems. Hence, they play a paramount role in the current deployment of the Internet of Things.

During last years, my contributions have focused on studying, finding solutions to three middleware issues in this context: dynamism, scalability and autonomy. Several platforms have been developed to validate the scientific and technologic choices performed. Jooflux and ConGolo are JVM-based approaches integrating dynamism in-application, either explicitly with ConGolo contextual programming, or implicitly with transparent aspect weaving of Jooflux. AxSeL, ACOMMA and MySIM are service-oriented approaches capturing the dynamism with dynamic and contextual service loading/unloading, collaborative execution, and semantic QoS-based service composition. CANDS allows to manipulate and manage very important information flow on very large service graphs while preserving millisecond-response time. Pri-REIN improves it with quality of service.

An important result has been to show that the autonomy property is strongly correlated with the middleware application domains, and was particularly tested in smart cities with guidance application, in-street parking management and traffic optimisation.

These works have strongly been supported by five defended thesis.

For future works, I will consider specific IoT issues to reduce the human intervention: large-scale initial deployment, safe and secure management, and distributed au autonomous decision-making inferring locally a global behaviour – i.e. Small Data.


Best Paper Award for Dynamid!

Dynamid Team members Roya Golchay, Frédéric Le Mouël, Julien Ponge and Nicolas Stouls won the Best Paper Award at CollaborateCom 2016!

The 12th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing took place on 12th and 13th November 2016 in Beijing, China.

Read the article “Spontaneous Proximity Cloud: Making Mobile Devices to Collaborate for Resource and Data Sharing” here


CITI Talk: “​​Challenges of a Reflective Platform”, by Stéphane Ducasse, on 24th November

The next CITI talk will take place on 24th November at 11 am in Amphi Chappe.

This talk entitled “Challenges of a Reflective Platform” will be presented by Stéphane Ducasse directeur de recherche at Inria-Lille..


Pharo is a live programming reflective dynamic language and environment. His tools are delivering an excellent programmer experience and are heavy user of its reflective abilities.
In this talk we will present briefly Pharo an immersive reflective platform and programming language ( and focused on:
(1) the problems we encounter daily (how to update core libraries while they are used to execute the updater itself, how can we get VM execution benefit from hot state right at system startup and without warming up, how can we isolate reflective parts of the system, what are the code representations we need to make happy the VMs and IDE)
(2) the infrastructure that we would like to have: since we are able to bootstrap the core of the system under 80 k, we can start thinking about multiple versions of the system coexisting, the question of the memory model is then important. Another question is how can we build a system where users can decide when they want to move code from one version to the other ones. Similarly, we would like to resume work on PharoNoOS and work on Xen hypervisor to gain benefit of hot hotspot and fast boot time.

Speaker biography

Stéphane is directeur de recherche at Inria. He has more than 20 years of experience in software maintenance. He leads the RMoD ( team. He is expert in two domains: object-oriented language design and reengineering.  He worked on traits, composable groups of methods. Traits have been introduced in  Pharo, Perl, PHP and  under a variant into Scala, Fortress of SUN Microsystems.  He is also expert on software quality, program understanding, program visualizations, reengineering and metamodeling. He is one of the developer of Moose, an open-source software analysis platform  He created a company building dedicated tools for advanced software analysis. He is one of the visionary core developers behind Pharo a new exciting reflective and immersive dynamically-typed language. According to google, his h-index is 49 for about 10 K citations. He is writing some new books around Pharo and having fun building a great and exciting system.

CITI Talk: “​​Who will drive cars ? Public Vehicles for Future Urban Transportation”, by Min-You Wu, on 8th November

The next CITI talk will take place on 8th November at 10.30 am in Amphi Chappe.

This talk entitled “Who will drive cars ? Public Vehicles for Future Urban Transportation” will be presented by Min-You Wu, from Shangai Jiao-Tong, China.


Urban transportation is undergoing a dramatic change. Conventional transportation consisting of private vehicles, taxis and buses will be substituted by trip service with autonomous vehicles. Transition from owning private vehicles to purchasing trip service is one of the most revolutionary changes in this century.
In this talk we discuss issues of autonomous trip services. We will discuss cost reduction of trip services. Three most important factors for low-cost trip services are manpower, energy and ridesharing. We focus on the ridesharing problem. We will discuss various techniques to increasing the sharing factor including passenger transfer, incentive mechanism and advanced booking.
We propose a new paradigm of transportation system for future smart cities, namely, Public Vehicles (PVs). With PVs, the number of vehicles as well as the required parking space will be significantly reduced. There will be less traffic congestion, less energy consumption and less pollution. The key issue of implementing an effective PV system is to design efficient planning and scheduling algorithms. We compare the PV system with conventional systems.

Speaker biography

Min-You Wu is a Professor in the Department of Computer Science and Engineering at Shanghai Jiao Tong University. He serves as the Chief Scientist at Grid Center of Shanghai Jiao Tong University. He is a research professor of the University of New Mexico, USA. His research interests include wireless and sensor networks, vehicular networks, multimedia networking, parallel and distributed systems, and compilers for parallel computers. He has published over 200 journal and conference papers in the above areas. His research has been supported by National Science Foundation, DoD, DoE, DARPA, China 863 program, China 973 program, Ministry of Education of China and Natural Science Foundation of China. He is a Vice Chair of Technical Committee of Computer Architecture, CCF. He is a senior member of IEEE and CCF.

CITI Talk: “​​Research presentation”, by Mohammad Rmayti, on 21st October

Mohammad RMAYTI, nouvel ATER IF/CITI, va présenter ses travaux de recherche dans le cadre d’un séminaire d’équipe DYNAMID, vendredi 21 octobre à 10h dans le pot de yaourt.


Avec l’évolution des besoins d’utilisateurs, plusieurs technologies de réseaux sans fil ont été développées. Parmi ces technologies, nous trouvons les réseaux mobiles ad hoc (MANETs) qui ont été conçus pour assurer la communication dans le cas où le déploiement d’une infrastructure réseaux est coûteux ou inapproprié. Dans ces réseaux, le routage est une fonction primordiale où chaque entité mobile joue le rôle d’un routeur et participe activement dans le routage. Cependant, les protocoles de routage ad hoc tel qu’ils sont conçus manquent de contrôle de sécurité. Sur un chemin emprunté, un nœud malveillant peut violemment perturber le routage en bloquant le trafic. Dans cette thèse, nous proposons une solution de détection des nœuds malveillants dans un réseau MANET basée sur l’analyse comportementale à travers les filtres Bayésiens et les chaînes de Markov. L’idée de notre solution consiste à évaluer le comportement d’un nœud en fonction de ses échanges avec ses voisins d’une manière complètement décentralisée. Par ailleurs, un modèle stochastique est utilisé afin de prédire la nature de comportement d’un nœud et vérifier sa fiabilité avant d’emprunter un chemin. Notre solution a été validée via de nombreuses simulations sur le simulateur NS-2. Les résultats montrent que la solution proposée permet de détecter avec précision les nœuds malveillants et d’améliorer la qualité de services de réseaux MANETs.


Après une Licence en Informatique à la Faculté des Sciences de l’Université Libanaise, j’ai fait mon Master 2 Recherche en Gestion des Risques dans les systèmes d’information à l’Ecole Doctorale de l’Université Libanaise. Intéressé par la sécurité de réseaux informatiques, j’ai effectué mon stage de recherche à l’Utt-Troyes sur la détection d’attaques DoS dans les réseaux VoIP. J’ai commencé ma thèse à l’UTT en codirection avec le Groupe Sécurité de Réseaux à Télécom ParisTech, qui portait sur la détection d’attaques DoS dans les réseaux mobiles ad hoc (MANETs). J’ai soutenu mes travaux de recherche le 30 septembre 2016.

CITI Talk: “​​Structured Interference Management: Fundamentals and Algorithms”, by Xinping Yi, on 19th October

The next CITI talk will take place on 19th October at 10 am in Amphi Chappe.

This talk entitled “Structured Interference Management: Fundamentals and Algorithms” will be presented by Xinping Yi,  research and teaching associate at Technische Universität Berlin.


In the future large-scale wireless internet of things, spectrum sharing calls for interference management techniques with low-complexity, low signaling overhead and flexible scalability. A pragmatic strategy is to focus on the underlying interference networks, exploiting the structural property of network topologies and the optimality of the simplest techniques of practical interest. In this talk, we focus on the fundamentals and algorithms of two practical interference management techniques — Treating Interference as Noise (TIN) and Topological Interference Management (TIM). The fundamental structural properties for their information-theoretic optimality in terms of (generalized) Degrees-of-Freedom (DoF) are revealed. The insights are also translated into the principles of algorithm design for spectrum sharing mechanisms in device-to-device communications, and edge caching in Fog-RAN under the TIM setting.


Xinping Yi has been a postdoctoral research associate in Technical University of Berlin, Berlin, Germany, since November 2014. He joined EURECOM, Sophia Antipolis, France in 2011 and received his Ph.D. degree from Telecom ParisTech, Paris, France, in October 2014. From 2009 to 2011, he was a research engineer at Huawei Technologies, Shenzhen, China. His research interests include information theory, signal processing, and machine learning, as well as their applications in wireless communications, content delivery networks and data analytics. X. Yi was a recipient of the 2014 Chinese Government Award for Outstanding Students Abroad.

CITI Talk: “European projects and strategy” by Marie-Cécile Barras and CITI team members, on 10th October

The next CITI talk will take place on 10th October at 10 am in TD-C. This seminar entitled “European projects and strategy” will be presented by Marie-Cécile Barras, in charge of European projects at Insavalor, and by Florent de Dinechin for Socrate, Frédéric Le Mouel for Dynamid, Hervé Rivano for Urbanet, Mathieu Cunche for Privatics, and Olivier Simonin for Chroma.


A special CITI seminar on the European projects/strategy will take on a slightly different format from the usual ones.

On the one hand, Marie-Cécile will present an overview of the current/future European calls, the networking meetings, the support tools set up by INSAVALOR, etc.

On the other hand, each CITI team will present its scientific challenges and European strategy/partners.