CITI is hiring two PhD Students

PhD Student – Powering neural network based wake-up radio with radio-frequency energy harvesting


Supervision: Matthieu Gautier and Olivier Berder (IRISA), Guillaume Villemaud and Florin Hutu (CITI)
Keywords: Internet of things, Wake-up radio, Energy harvesting
Location: Shared between Lannion and Lyon (to be discussed)
Candidate skills: Signal processing and electronics are mandatory, backgrounds in digital communication, IoT, microcontroller programming are welcome
Application: Send CV, marks and motivation letter to and guillaume.villemaud@

Internet of Things (IoT) is becoming a reality. It will greatly impact our daily lives (city, housing, transportation, health, environment) and many economic sectors (agriculture, industry…). Unlicensed bands (868 MHz, 2.4 GHz) play an important role in this evolution with technologies like LoRa, SigFox or IEEE 802.15.4. However, energy consumption remains a major bottleneck, with many applications requiring the lifespan of objects to reach several years, even decades, without changing the batteries. Many efforts have been deployed to push the boundaries of energy autonomy, without however a full success.

The radio transceiver often turns out to be the most energy consuming part of a wireless node, due to both the transmitting and also receiving phases. For instance, initiating a communication requires that the source and the destination are awake at the same time. It can be difficult to plan and usually requires some highly penalizing signalling protocols. In short range multi-hop networks, ernergy consuming MAC strategies are implemented in order to synchronize the source and the destination. Low Power Wide Area Networks solved this issue by having always turned-on base stations using single hop communications and a simple ALOHA protocol, but this only works for the uplink. Wake-up receivers form an emerging technology, which allows continuous channel monitoring, while consuming orders of magnitude less power than traditional receivers. These receivers wake up a main transceiver using interrupts only when a specific signal is detected. Thus, fully asynchronous communication can be achieved, resulting in a huge decrease of energy waste. However, most wake-up receivers are still relying on low power microcontrollers that perform signal recognition but consume peak powers higher than 200 μW, making IoT nodes unable to reach their ultimate energy efficiency.

ANR U-Wake project aims to achieve a breakthrough in the field of IoT by developing a disruptive wake-up receiver solution based on (1) a bioinspired architecture achieved with an industrial CMOS technology (with transistors operating in deep sub-threshold regime) and (2) Electro Magnetic energy harvesting. The originality lies in the association of a Radio Frequency (RF) demodulator to a neuro-inspired detector and data- processing through a spiking neural network (SNN), resulting in a complete ultra-low power wake-up radio supplied with a voltage of a few 100 mV.

Objective of the PhD
The proposed receiver will be woken up when detecting a dedicated off-line learned sequence and implemented in a hardware fashion using an ultra-low power SNN. The main advantage of such a design is that it requires a few mW or less for the whole wake-up receiver. Furthermore, it can work in the 868 MHz or 2.4 GHz bands and has the ability to recognize different types of signals (on-off keying, BPSK or chirp spread spectrum modulation for instance). Requiring such a low consumption opens up the possibility to be powered using RF energy harvesting or Wireless Power Transfer, and opens the way to a wide range of application.

This PhD will focus on the energy efficiency of the proposed solution at both hardware and software levels. It will address the global node design, including RF energy harvesting unit, the integration of neuro-inspired circuits and related wake-up mechanisms, and will propose adequate power management policies.

More information here


PhD Student – Nouvelles stratégies de télé alimentation d’objets communicants et de drones en utilisant des techniques de formation de faisceau distribuée


Supervision: Guillaume Villemaud et Florin Hutu (CITI)
Keywords: radiocommunications, téléalimentation, IoT, drone, beamforming
Location: CITI laboratory, INSA Lyon, France
Application: Send CV, marks and motivation letter to and guillaume.villemaud@

Avec l’avancement des technologies semiconducteur et la réduction de la taille et du cout de fabrication des objets communicants, des conditions favorables ont été créées pour produire des capteurs communicants performants qui permettent le monitoring de différents phénomènes physiques, qui ont une autonomie accrue et qui impliquent une intervention humaine limitée voire inexistante. L’autonomie reste néanmoins un problème majeur pour ce type de capteurs, la durée de vie du réseau qui le forme lui étant étroitement liée. Plusieurs techniques ont été proposées et validées en ce sens, en partant de l’optimisation de la consommation énergétique au niveau bloc fonctionnel jusqu’à une optimisation au niveau protocole de communication. Le déploiement de tels capteurs est un enjeu majeur pour les systèmes civils et militaires et des techniques permettant la réduction de l’énergie consommée par ces objets se combinent avec des techniques de récupération d’énergie ambiante pour envisager des capteurs communicants sans source d’alimentation locale. De même la téléalimentation de micro-drones est un sujet en pleine émergence qui peut bénéficier des mêmes approches.

Objective of the PhD
Cette thèse adresse le problème de la synchronisation et de la mise en cohérence de phase des sources distribuées géographiquement. L’application envisagée est celle de la transmission de puissance sans fil en mettant en place des stratégies de type formation de faisceau distribuée. Ce projet souhaite aborder la problématique de la transmission de puissance sans fil vers un objet communicant à faible ressources énergétiques aussi bien de point de vue système de communication mais aussi du point de vue automatique ou le potentiel d’alimentation de micro-drones avec suivi de leur trajectoire. En automatique, le problème traité ici s’apparente à celui de la synchronisation d’un réseau de systèmes à retard ou bien à celui du suivi de trajectoire de référence. Les outils théoriques appliquées à ce scénario concret seront la commande de systèmes multi-agents, la commande de système à retard et l’observation de retard. Ces stratégies seront adaptées pour répondre aux contraintes matérielles des instruments de génération et d’analyse des signaux du laboratoire CITI. En effet, les « transcepteurs » vectoriels de signaux (VST) PXI-5646 de Nationals Instruments sont ciblés dans un premier temps pour ensuite passer à une échelle supérieure en utilisant la plateforme CorteXlab.

More information here



CITI seminar – El Hourcine Bergou (INRAE) – 09/04 at 15:00

Title:  Stochastic Three Points Method For Unconstrained Smooth Minimization

Date and Place: 9th April 2021 15:00 – link

Speaker: Dr El Hourcine Bergou (INRAE)



In this work, we consider the unconstrained minimization problem of a smooth function in a setting where only function evaluations are possible. We design a novel randomized derivative-free algorithm—the stochastic three points (STP) method—and analyze its iteration complexity. At each iteration, STP generates a random search direction according to a certain fixed probability law. Our assumptions on this law are very mild: roughly speaking, all laws which do not concentrate all measure on any halfspace passing through the origin will work. Although, our approach is designed to not explicitly use derivatives, it covers some first order methods. For instance, if the probability law is chosen to be the Dirac distribution concentrated on the sign of the gradient, then STP recovers the Signed Gradient Descent method. If the probability law is the uniform distribution on the coordinates of the gradient, then STP recovers the Randomized Coordinate Descent Method.
The complexity of STP depends on the probability law via a simple characteristic closely related to the cosine measure which is used in the analysis of deterministic direct search (DDS) methods. Unlike in DDS, where $O(n)$ ($n$ is the dimension of the problem) function evaluations must be performed in each iteration in the worst case, our method only requires two new function evaluations per iteration. Consequently, while the complexity of DDS depends quadratically on $n$, our method depends linearly on $n$.



Dr l Hourcine Bergou is a research scientist at INRAE. My research interests are in all areas that intersect with optimization, including algorithms, machine learning, statistics, and operations research. I am particularly interested in algorithms for large scale optimization including randomized and distributed optimization methods.


CITI seminar – Michael Barros (University of Essex, UK) – 01/04 at 14:00

Title:  Molecular Communications using Astrocytes for Boolean logic gates implementation in mammalian cells

Date and Place: 1st April 2021 14:00 – link

Speaker: Dr Michael Barros (University of Essex, UK)



In this talk we will show the use of astrocytes to realize Boolean logic gates, through manipulation of the threshold of Ca2+ ion fows between the cells based on the input signals. Through wet-lab experiments that engineer the astrocytes cells with pcDNA3.1-hGPR17 genes as well as chemical compounds, we show that both AND and OR gates can be implemented by controlling Ca2+ signals that fow through the population. A reinforced learning platform is also presented in the paper to optimize the Ca2+ activated level and time slot of input signals Tb into the gate. This design platform caters for any size and connectivity of the cell population, by taking into consideration the delay and noise produced from the signalling between the cells. To validate the efectiveness of the reinforced learning platform, a Ca2+ signalling simulator was used to simulate the signalling between the astrocyte cells. The results from the simulation show that an optimum value for both the Ca2+ activated level and time slot of input signals Tb is required to achieve up to 90% accuracy for both the AND and OR gates. Our method can be used as the basis for future Neural–Molecular Computing chips, constructed from engineered astrocyte cells, which can form the basis for a new generation of brain implants.



Dr Barros is an Assistant Professor (Lecturer) since June 2020 in the School of Computer Science and Electronic Engineering at the University of Essex, UK. He is also a MSCA-IF Research Fellow (part-time) at the Tampere University, Finland. He received the PhD in Computer Science at the Waterford Institute of Technology in 2016. He previously held multiple academic positions as a Research Fellow in the Waterford Institute of Technology, Ireland.
He has over 70 research peer-reviewed scientific publications in top journals and conferences such as Nature Scientific Reports, IEEE Transactions on Communications, IEEE Transactions on Vehicular Technology, in the areas of molecular and unconventional communications, biomedical engineering, bionano science and 6G. Since 2020, he is a review editor for the Frontiers in Communications and Networks journal in the area of unconventional communications. He also served as guest editor for the IEEE Transactions on Molecular, Biological and Multi-Scale Communications and Digital Communications Networks journals. He received the CONNECT Prof. Tom Brazil Excellence in Research Award in 2020. Dr Barros was awarded also the Irish Research Council’s (IRC) Government of Ireland Post-doc Fellow from 2016-2018 and the Enterprise Ireland’s (EI) Commercialization Funding from 2018-2019.


CITI seminar – Somantika Datta (Univ. Idaho, USA) – 18/02 at 14:00

Title: Construction and properties of certain real multi-angle tight frames

Date and Place: 18th February 2021 14:00 – link

Speaker: Prof. Somantika Datta (Univ. Idaho, USA)



Frames are now standard tools in signal processing, and have applications ranging from compressed sensing, to communication systems and quantum sensing. Designing frames with some special structure such as equiangularity and tightness is highly desirable in applications. However, constructing equiangular tight frames (ETFs) with a given size in a specific dimension can be difficult or impossible in some cases. This leads one to consider the construction of frames with few distinct angles among pairs of frame vectors. In the special case of d+1 vectors in a d-dimensional space, it is well known that the vertices of a regular simplex will give an ETF. Using this, we will show a specific construction which, for a given dimension d and integer 1 < k ≤ d, gives a real unit norm tight frame such that the number of distinct angles among the vectors is bounded above by k. We will present several properties of this multi-angle tight frame. We also show how one can strategically choose subsets of such a multi-angle tight frame that will be equiangular or orthogonal. This property is meaningful in the context of erasures. We will also discuss a connection between certain unit norm tight frames with three angles and adjacency matrices of regular graphs.



Somantika Datta is an associate professor of mathematics at the University of Idaho. She received a Ph.D. in mathematics from the University of Maryland, College Park. This was followed by postdoctoral positions at Arizona State University and Princeton University. Her research interests lie in the area of applied harmonic analysis with focus on frame theory and applications in signal processing.


CITI seminar – Daryus Chandra (University of Southampton, UK) – 11/02 at 14:00

Title: Quantum Communications over Noisy Entanglement

Date and Place: 11th February 2021 14:00 – link

Speaker: Dr Daryus Chandra (University of Southampton, UK)



Within the Quantum Internet framework, multiple quantum devices are interconnected via pre-shared maximally-entangled quantum states for enabling various applications, including the on-demand classical and quantum communication. Hence, the pre-shared entanglement, which is constituted by the EPR pair, can be viewed as the primary consumable resources within the Quantum Internet. However, the generation and the distribution of the EPR pairs are subject to quantum decoherence imposed by the quantum channels, which will manifest as quantum errors. Similar to the classical domain, the quantum errors imposed by the quantum channels can be mitigated using quantum error-correction codes. In this talk, we will explore two approaches for achieving reliable quantum communication over noisy entanglement by incorporating quantum error-correction codes. More specifically, the first approach is constituted by the consecutive steps of quantum entanglement distillation followed by quantum teleportation, while the second approach can be viewed as the direct quantum communication over noisy entanglement. We will also discuss the pros and the cons of each approach while examining their compatibilities for a broader range of applications for the Quantum Internet framework.



Daryus Chandra is a research fellow at the Next-Generation Wireless Research Group, School of Electronics and Computer Science, University of Southampton, UK. He received the B.Eng. and M.Eng. degree from the Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada, Indonesia, in 2013 and 2014, respectively. He obtained his PhD with the Next-Generation Wireless Research Group, School of Electronics and Computer Science, University of Southampton, UK, in 2020. He returned to Southampton in 2021 after completing a one-year postdoctoral research fellowship at Quantum Internet Research Group, University of Naples Federico II, Italy.


Experiment at CITI: transmitting warning image notifications on the FM radio broadcasting infrastructure


Nicolas et Florin are able to transmit warning image notifications on the FM radio broadcasting infrastructure.
All technical details are described in this video and in their associated IEEE Access paper.



R. G. Bozomitu, F. D. Hutu and N. De Pinho Ferreira, “Drivers’ Warning Application Through Image Notifications on the FM Radio Broadcasting Infrastructure,” in IEEE Access, vol. 9, pp. 13553-13572, 2021, doi: 10.1109/ACCESS.2021.3050669.



In this paper a new application for transmitting image notifications on the FM radio broadcasting infrastructure, dedicated to warn drivers about significant road events and to increase the traffic safety is presented. The paper analyzes different technical solutions suitable for transmitting and receiving real-time image notifications in different scenarios by using the software-defined radio concept. In the first scenario, the image notifications are QPSK modulated and transmitted with 8 kb/s bit-rate by using a mono FM radio channel. In order to increase the speed of data transmission, the second scenario uses the FM subcarrier channels dedicated for broadcasting alternate services. In this case, a stereo FM radio channel is used to transmit data with 40 kb/s, 60 kb/s and 80 kb/s bit-rates, by using QPSK, 8-PSK and 16-PSK modulations, respectively. A new software solution to perform the real-time carrier synchronization for 8-PSK/16-PSK modulation based on a decision-directed PLL and non-linear decision block is also presented. The functionality of the proposed application was demonstrated by simulations for both transmission scenarios. Moreover, the first scenario was tested experimentally by using a professional FM transmitter and a simple RTL-SDR dongle as receiver. The customized baseband modulating signal including audio, data (image notification) and RDS signals was generated by using a device built by the authors. The receiver provides the digital signal through a USB interface to a software program, running on a processing unit, for demodulation. An experimental method for plotting the bit error rate vs. Eb/N0 ratio, based on signal-to-noise ratio measured with a software spectrum analyzer is also proposed. This method allows the characterization of the data transmissions performed by using an experimental setup and give hints about the QPSK signal power level compared to the other ones (audio and RDS signals).

A CITIzen won the GDR RSD / ASF Thesis Prize 2020: congrats Ahmed!

Ahmed Boubrima won the GDR RSD / ASF Thesis Prize 2020. Ahmed defended its thesis titled “Déploiement et ordonnancement de réseaux de capteurs sans fil pour le suivi de la pollution de l’air” the 12th of March 2019. Congrats Ahmed!


Here an abstract of its thesis:

Les réseaux de capteurs sans fil (RCSF) sont largement utilisés dans les applications environnementales où l’objectif est de détecter un phénomène physique tel que la température, l’humidité, la pollution de l’air, etc. Dans ce contexte d’application, l’utilisation de RCSF permet de comprendre les variations du phénomène et donc être en mesure de prendre des décisions appropriées concernant son impact. En raison des limitations de ses méthodes de suivi traditionnelles et de sa grande variabilité spatiale et temporelle, la pollution de l’air est considérée comme l’un des principaux phénomènes physiques qui restent à étudier et à caractériser. Dans cette thèse, nous considérons trois applications concernant l’utilisation de RCSF pour le suivi de la pollution de l’air : la cartographie en temps réel de la qualité de l’air, la détection de dépassements de seuils des polluants et la correction de modèles physiques qui simulent le phénomène de dispersion de la pollution. Toutes ces applications nécessitent de déployer et d’ordonnancer minutieusement les capteurs afin de mieux comprendre la pollution atmosphérique tout en garantissant un coût de déploiement minimal et en maximisant la durée de vie du réseau. Notre objectif est de résoudre les problèmes de déploiement et d’ordonnancement tout en tenant compte des caractéristiques spécifiques du phénomène de la pollution de l’air. Nous proposons pour chaque cas d’application une approche efficace pour le déploiement de noeuds capteurs et puits. Nous proposons également une approche d’ordonnancement adaptée au cas de la correction de modèles physiques. Nos approches d’optimisation prennent en compte la nature physique de la pollution atmosphérique et intègrent les données réelles fournies par les plateformes existantes de suivi de la qualité de l’air. Dans chacune de nos approches d’optimisation, nous utilisons la programmation linéaire en nombres entiers pour concevoir des modèles d’optimisation adaptés à la résolution de petites et moyennes instances. Pour traiter les grandes instances, nous proposons des heuristiques en utilisant des techniques de relaxation linéaire. Outre nos travaux théoriques sur le suivi de la pollution atmosphérique, nous avons conçu et déployé dans la ville de Lyon un réseau de capteurs de pollution économe en énergie. Sur la base des caractéristiques de notre système et des jeux de données de la pollution atmosphérique, nous avons évalué l’efficacité de nos approches de déploiement et d’ordonnancement. Nous présentons et discutons dans cette thèse les résultats d’évaluation de performances ainsi que des lignes directrices pour la conception de systèmes de suivi de la pollution de l’air. Parmi nos principales conclusions, nous soulignons le fait que la taille optimale du réseau de capteurs dépend du degré de variation des concentrations de pollution dans la région de déploiement.

PhD Defence: “De l’évaluation des performances Wi-Fi à la mobilité contrôlée pour les réseaux de drones”, Remy Grünblatt, 8th of January 2021 at 14:00 PM

The defense will be streamed live here: link



De l’évaluation des performances Wi-Fi à la mobilité contrôlée pour les réseaux de drones



La mobilité dans les réseaux de télécommunications est souvent considérée comme un problème qu’il faut résoudre : un appareil mobile sans fil doit adapter ses paramètres de transmission afin de rester connecté à son ou ses homologues, car le canal évolue avec les mouvements de l’appareil. Les drones, qui sont des véhicules aériens sans pilote, ne font pas exception. En raison de leur grande liberté de mouvements, de leur mobilité tridimensionnelle, et ce dans des environnements aussi nombreux que variés, de leur charge utile limitée et de leurs contraintes énergétiques, et en raison du large éventail de leurs applications dans le monde réel, les drones représentent de nouveaux objets d’étude passionnants dont la mobilité est un défi. Pourtant, la mobilité peut aussi être une chance pour les réseaux de drones, surtout lorsque nous pouvons la contrôler. Dans cette thèse, nous explorons comment la mobilité contrôlée peut être utilisée pour augmenter les performances d’un réseau de drones, en mettant l’accent sur les réseaux IEEE 802.11 et les petits drones multi-rotor. Nous décrivons d’abord comment la mobilité est traitée dans les réseaux 802.11, c’est-à-dire en utilisant des mécanismes d’adaptation de débit, puis nous effectuons l’ingénierie inverse de l’algorithme d’adaptation de débit utilisé dans le chipset Wi-Fi du drone Intel Aero. L’étude de cet algorithme d’adaptation de débit, de manière à la fois expérimentale et par simulation, grâce à son implémentation dans le simulateur de réseau NS-3, permet de le comparer à d’autres algorithmes bien connus. Cette étude met en évidence l’importance de ces algorithmes pour les réseaux de drones, en lien avec leur mobilité, et la différence de comportement de chaque nœud en résultant. Par conséquent, une solution de mobilité contrôlée visant à améliorer les performances du réseau ne peut pas supposer beaucoup du comportement des algorithmes d’adaptation de débits. En outre, les applications des réseaux de drones sont diverses, et il est difficile d’imposer des contraintes de mobilité sans devenir incompatible avec un pan complet d’applications. Nous proposons donc une solution de mobilité contrôlée qui exploite le diagramme de rayonnement de l’antenne des drones. Cet algorithme est évalué grâce à outil de simulation développé pour l’occasion, permettant la simulation d’antennes et de drones, basé sur NS-3. Cette solution, qui fonctionne avec n’importe quel algorithme d’adaptation de débit, est distribuée, et ne nécessite aucune coordination globale ou communication spécifique qui pourrait s’avérer coûteuses. Elle ne nécessite pas non plus un contrôle complet de la mobilité du drone comme le requièrent les solutions de mobilité contrôlée existantes, ce qui rend cette solution compatible avec diverses applications.




  • Mme. Nathalie MITTON, Directrice de recherche à INRIA Lille Nord – Europe, Rapportrice
  • Mr. Enrico NATALIZIO, Professeur des universités au Technology Innovation Institute – Abu Dhabi, Rapporteur
  • Mme. Laure GONNORD, Maître de conférences à l’université Lyon 1 Claude Bernard – Lyon, Examinatrice
  • Mr. André-Luc BEYLOT, Professeur des universités à l’ENSEEIHT – Toulouse, Examinateur
  • Mr. Franck ROUSSEAU, Maître de conférences à Grenoble INP-Ensimag – Grenoble, Examinateur
  • Mme. Isabelle GUÉRIN-LASSOUS, Professeure des universités à l’université Lyon 1 Claude Bernard – Lyon, Directrice de thèse
  • Mr. Olivier SIMONIN, Professeur des universités à l’INSA de Lyon, Codirecteur de thèse

CITI seminar – Lucien Etienne (IMT Lille-Douai) – 17/12 at 14:00

Title: Self trigger co-design using LASSO regression

Date and Place: 17th December 2020 14:00 – link

Speaker: Lucien Etienne (IMT Lille-Douai)



Networked systems have become more and more pervasive in many modern industrial application. A good justification for their deployment is that they can be cheaper/faster to set in place as well are scalable while also enabling lower maintenance cost. In the past decade a new paradigm has been developed where the controller is not sampled periodically (i.e. with a time–triggered policy), but rather sampled when some condition has been met (Usually a stability or performance criterion being violated). After recalling some general element on classical control scheme ( Linear Quadratic regulator and model predictive control) In this talk, the control of a linear time invariant system with self triggered sampling is considered .
In order to address the controller computation and the future sampling schedule a sparse optimization problem will be considered. A relaxation of the optimal self triggered control can be formulated as a LASSO regression. Using the properties of the solution of the Lasso regression it is shown how to obtain a controller ensuring practical or asymptotic stability while reducing sampling of the control action.



Dr. Lucien Etienne received a M.Sc. Degree in applied mathematics at the INSA Rouen in 2012 and a joint Ph.D. in automatic control from the university of L’aquila and the university of Cergy-Pontoise in 2016. From 2016 to 2017 he was a post doctoral researcher at Inria Lille-Nord Europe. Since 2017 He is an associate professor at Institut Mines-Télécom Lille Douai. His research interests include switched and hybrid systems, observer synthesis and sampled data systems.


PhD Defence: “Impulsive and Dependent Interference in IoT Networks”, Ce Zheng, 8th of December 2020 at 14:00PM

The defense will be streamed live here: link



Impulsive and Dependent Interference in IoT Networks


The number of devices in wireless IoT networks is now rapidly increasing and is expected to continue growing in the coming years.
To support this massive connectivity, a number of new technologies, collectively known as LPWAN, have been developed. Many devices in LPWANs limit their transmissions by duty cycle constraints; i.e., the proportion of time allocated for transmission. For nearby wireless networks using the same time-frequency resources, the increasing number of devices leads to a high level of unintended signals, known as interference.

In this thesis, we characterize the statistics of interference arising from LPWANs, with a focus on protocols related to NB-IoT and emerging approaches such as SCMA. Such a characterization is critical to improve signal processing at the receiver in order to mitigate the interference. We approach the characterization of the interference statistics by exploiting a mathematical model of device locations, signal attenuation, and the access protocols of individual interfering devices. While there has been recent work developing empirical models for the interference statistics, this has been limited to studies of the interference power, which has limited utility in receiver design. The approach adopted in this thesis has the dual benefits of providing a model for the amplitude and phase statistics and while also yielding insights into the impact of key network parameters. The first contribution in this work is to revisit interference in a single subcarrier system, which is widely used in current implementations of IoT networks. A basic model in this scenario distributes interfering devices according to a homogeneous Poisson point process. It has been long known that the resulting interference is well approximated via an alpha-stable model, rather than a Gaussian model. In this work, the \alpha-stable model is shown via theoretical and simulation results to be valid in a wider range of models, including the presence of guard zones, finite network radii, and non-Poisson point processes governing device locations. The second contribution in this thesis is the study, for the first time, of interference statistics in multi-carrier IoT networks, including those that exploit NB-IoT and SCMA. Motivated by the results in the single subcarrier setting, a multivariate model based on alpha-stable marginals and copula theory is developed. This model is verified by extensive simulations and further justified via a new, near-optimal, parameter estimation algorithm, which has very low complexity. The third part of this thesis applies the characterizations of the interference statistics to receiver design. A new design for nonlinear receivers is proposed that can significantly outperform the state-of-the-art in multi-carrier IoT systems. When receivers are restricted to be linear, the optimal structure is identified and the bit error rate characterized. Numerical results also illustrate how the average quantity of data interfering devices are required to transmit affects the receiver performance.



  • Prof. Claude Oestges (Ecole Polytechnique de Louvain, Belgium)
  • Assis. Prof. Lina Mroueh (Institut Supérieur d’Electronique de Paris, France)
  • Assoc. Prof. Mylene Pischella (Conservatoire National des Arts et Métiers, France)
  • Prof. Jean-François Hélard (INSA Rennes)
  • Assoc. Prof. Troels Pedersen (Univ. Aalborg, Denmark)
  • Prof. Gareth Peters (Heriot-Watt, UK)