
CITI is part of the organisation of the summer school and days on distributed learning from September 19th to September 22th, 2023 in Lyon.
Speaker: François is Prof. at University of Sherbrooke (Canada), and leading the IntroLab at the 3IT institute.
Date: 26/05/2023
Time: 11h00
Place: Amphi Chappe/Lamarr, 6 avenue des arts, La Doua Campus
Title: Working Toward Human-Robot Symbiosis
Abstract: Human-robot symbiosis implies developing robotic systems that can collaborate with humans in open and ‘messy’ conditions, meaning unpredictable real-life settings, such as those found in assistive healthcare and work environments. Achieving human-robot symbiosis requires humanizing the sensing, perception, reasoning, and actuating capabilities based on evaluating human safety, well-being, acceptability, and usability. Researchers need to adopt a holistic approach enabling robots to seamlessly ‘see, hear and be’ in everyday settings, and design robots that are situationally balanced, in which complexity levels of sensory, motor, and artificial intelligence (AI)/cognitive capabilities are matched with the environment and people. This presentation addresses an overview of interactive robots and systems developed at IntRoLab, Université de Sherbrooke, involving compliant actuators, assistive robot platforms, telepresence robots, vision-based SLAM, drone intrusion, weed remoal robot, robot companion and robotic living labs.
Bio: François Michaud, Ph.D., is an engineer and full professor in the Department of Electrical and Computer Engineering at the Université de Sherbrooke, in Québec Canada. Holder of the Canada Research Chair in Mobile Robotics and Intelligent Autonomous Systems from 2001 to 2011, his research activities are aimed at integrating intelligent autonomous robotic systems into everyday operating conditions, to improve the well-being of people. His expertise is in human-robot interaction, assistive robotics, telepresence robotics, robot design and cognitive robotics. He has extensive experience in initiating and conducting interdisciplinary and intersectoral research projects involving collaborators in physiotherapy, occupational therapy, agriculture, child psychiatry, education, cognitive science, manufacturing, arts and automotive. He has published over 225 peer-reviewed papers in journals and international conferences (h-index 50), has been awarded 8 patents, has five significant distributed open source (software and hardware) contributions used by the robotics community, and has received funding over 50 M$ CAD supporting a broad range of research initiatives. He is the founding director of the Interdisciplinary Institute for Technological Innovation (3IT) (2008 – 2015), co-founder of Robotique FIRST Quebec (2010 – ), founder of Quebec Strategic Cluster INTER (Interactive Technologies in Rehabilitation Engineering) (2011 – ), and co-founder of a graduate training program CoRoM (COllaborative RObotics for Manufacturing). He is the Editor-in-Chief of Springer Nature Current Robotics Reports. He is also the founding director of the Bachelor of Robotics Engineering Program (2017 – ) at the Université de Sherbrooke, the first and only one in Canada.
Le PhD Day du CITI se déroulera le 9 Mars toute la journée dans le bâtiment Chappe/Lamarr de l’Insa-Lyon !
Cette journée conviviale et scientifique est l’occasion rêvée pour découvrir les sujets de recherche du laboratoire et sur les doctorants qui les mènent.
Programme complet ainsi que les profils des doctorants participants ici.
The CITI is glad to participate to a 2-day Workshop entitled Performance Guarantees in Wireless Networks, organized by François Baccelli (Inria and Télécom-Paris) and Jean-Marie Gorce (Insa Lyon and Inria Lyon).
The workshop will take place on March 2023, Wednesday 8th and Thursday 9th, @LINCS: Télécom-Paris, 19 place Marguerite Perey, Palaiseau, Amphi Rose Dieng.
The web site of the event is here and the list of the confirmed invited speakers and the program are there.
IMPORTANT! Registering is required to attend.
Speaker: Pablo Rauzy (Université Paris 8)
Date: 10/02/2023
Time: 12h15
Place: Amphi Chappe/Lamarr, 6 avenue des arts, La Doua Campus
Title: Promesses et (dés)illusions : une introduction technocritique aux blockchains
Abstract: Une blockchain est un registre distribué et immuable dans lequel sont écrites des informations qui font consensus. ». Dans cet article, nous commencerons par donner du sens à cette phrase et à l’ensemble des termes qui y sont employés, en nous efforçant quand c’est nécessaire de rendre accessibles les notions informatiques (comme la décentralisation, la distribution, l’immuabilité, ou le consensus) et le fonctionnement technique des outils cryptographiques sous-jacents (comme les condensats, les signatures, ou la preuve de travail ou d’enjeu). L’objectif de cette introduction sera d’atteindre une compréhension réelle de ce qu’est une blockchain.
Ainsi équipé·es, nous discuterons ensuite de ce que les blockchains permettent effectivement d’accomplir, et donc surtout ce qu’elles ne permettent pas. Nous questionnerons alors les utilisations qui en sont proposées en nous concentrant sur des cas d’usage typiques des blockchains que nous étudierons plus en détails : les « cryptomonnaies » bien sûr, la certification de documents (avec l’exemple des diplômes), et nous mentionnerons également le cas des NFT. Cela nous permettra en conclusion de questionner de manière générale le caractère d’« innovation de rupture » que l’on associe souvent à cette technologie.
Bio: Pablo Rauzy est maître de conférences en informatique à l’Université Paris 8 et membre de l’équipe PASTIS du LIASD. Avant sa prise de poste à Paris 8 en 2016, il a été doctorant dans l’équipe SEN de Télécom ParisTech puis post-doctorant dans l’équipe Inria Privatics au CITI. Ses travaux de recherche portent de manière générale sur la sécurité et touchent à différents aspects du domaine — privacy et contrôle, formalisation et modélisation, cryptographie et implémentation —, toujours avec la volonté d’une approche émancipatrice consciente du caractère non-neutre des sciences et technologies. C’est ce souci qui l’a conduit à devoir finalement s’intéresser aux blockchains dans le cadre de sa recherche, pour rendre accessible au plus grand nombre leur fonctionnement, leurs limites, et leurs dangers.
Speaker: Eleftherios Kofidis (University of Patras)
Date: 24/01/2023
Time: 14h00
Place: Amphi Chappe/Lamarr, 6 avenue des arts, La Doua Campus
Title: Tensor methods and applications
Abstract: Tensor models have been well established as a natural and powerful way of representing systems and data that involve multiple aspects/dimensions. Assisted by their unique ability to unveil latent information through tensor decomposition methods, they have proved successful in numerous applications. In this talk, I will present some of our recent work and results on tensor methods, with example applications including wireless communications and remote sensing.
Bio: Eleftherios Kofidis received the Diploma (MEng) and Ph.D. degrees in 1990 and 1996, respectively, both from the Department of Computer Engineering and Informatics, University of Patras, Patras, Greece. From 1996 to 1998 he served in the Hellenic Army. In the period 1998 to 2000, he was a postdoctoral fellow at the Institut National des Télécommunications (INT), Évry, France (now Télécom SudParis). From 2001 to 2004, he was a research associate at the University of Athens, and adjunct professor at the Universities of Peloponnese and Piraeus, Greece. In 2004, he joined the Dept. of Statistics and Insurance Science, University of Piraeus, Greece, where he is now Associate Professor. He is also affiliated with the Computer Technology Institute & Press “Diophantus” (CTI), Greece. His research interests are in signal processing and machine learning, with applications including communications and medical imaging. He has served as technical program co-chair and in the organization and technical program committees of a number of conferences. Dr. Kofidis has served as Associate Editor in the IEEE Transactions on Signal Processing, the EURASIP Journal Advances in Signal Processing, and the IET Signal Processing journal.
The defense will take place on Friday 16th December at 10 AM in the est amphi of the Humanities building, Insa-Lyon, Villeurbanne.
Resilient IoT-based Monitoring System for the Nigerian Oil and Gas Industry
Pipeline failures in crude oil transportation occur due to ageing infrastructure, third-party interferences, equipment defects and naturally occurring failures. Consequently, hydrocarbons are released into the environment resulting in environmental pollution, ecological degradation, and unprecedented loss of lives and revenue. Hence, multiple leakage detection and monitoring systems (LDMS) are employed to mitigate such failures. More recently, these LDMS include Wireless Sensor Networks (WSN) and Internet of Things (IoT)-based systems. While they are proven more efficient than other LDMS, many challenges exist in their adoption for pipeline monitoring. These include fault tolerance, energy consumption, accuracy in leakage detection and localisation, and high false alarms, to cite a few.
Therefore, our work seeks to address some of these challenges in implementing IoT-based systems for crude oil pipelines in a resilient end-to-end manner. Specifically, we consider the aspect of accurate leakage detection and localisation by introducing a unique node placement strategy based on fluid propagation for sensitive and multi-sized leakage detection. We also propose a new distributed leakage detection technique (HyDiLLEch) in the WSN layer. It is based on a fusion of existing leakage detection techniques such as the negative pressure wave method, gradient-based method, and pressure point analysis. With HyDiLLEch, we efficiently eliminate single points of failure.
Furthermore, we implement fault-tolerant data and service management in the fog layer utilising the Nigerian National Petroleum Corporation (NNPC) pipeline network as a use case. The problem is modelled as a regionalised data-driven game against nature on the NNPC pipelines. Our proposed regionalised solution (R-MDP) using reinforcement learning optimises accuracy and fault tolerance while minimising energy consumption.
Overall, our system guarantees resiliency to failures and efficiency in terms of detection and localisation accuracy and energy consumption.
The defense will take place on Friday 16th December at 10 AM in the west amphi of the Humanities building, Insa-Lyon, Villeurbanne.
Contributions to the development of passive RFID tag-to-tag communications for the Internet of Things
With the emergence of cognitive sensor networks, and in particular the IoT (Internet of Things), passive RFID (Radio Frequency Identification) UHF (Ultra High Frequency) technology is evolving with new functionalities. New types of applications going beyond the classics such as logistics, security and traceability are being developed. Still benefiting from unitary identification, new types of tags, called augmented tags, are appearing integrating new capacities such as environmental sensitivity, cognitive behaviour, data processing, communication between tags, etc. In this context, the objective of this thesis is to propose strategies and methods to optimize communications between tags, called tag-to-tag “tag-to-tag” (T2T) communications. This new type of radio link, between directly communicating tags, relies on the presence of an external radio frequency (RF) source and is based on the principle of retro-modulation. In particular, the scenarios analyzed are projected within the framework of the Spie ICS – INSA Lyon chair, which focuses on the IoT.
This thesis more specifically targets the application domain of UHF RFID for which the concept of T2T communications has been proposed and demonstrated since 2011, but with relatively little work done so far. In a T2T RFID system, two RFID tags (passive or semi- passive) communicate with each other directly without going through the reader. One of the tags plays the role of “reader tag”: in the presence of an RF source (for example an RFID reader) in its vicinity, it emits binary information by retro-modulation (or backscatter by switching charges), by switching the load seen by its antenna on two distinct impedances, thus reflecting two distinct power levels (modulation here considered in amplitude). The other tag plays the role of “receiver tag”: it receives the information transmitted and demodulates it.
In the traditional case of UHF RFID, the reader emits, in accordance with the standard, a modulated signal with a high modulation depth in order to facilitate the detection of the message transmitted by the tag. The tag responds by retro modulation and the signal it returns is then a signal where the two levels of information (in the case of amplitude modulation) are not very distinct and noisy. However, the player’s demodulator is very efficient, based on quadrature synchronous demodulation, it has very good sensitivity. In the case of T2T communication, a fundamental difference is that the detection is here performed by the second tag which is in the vicinity of the reader tag. Consequently, on the one hand, the performance of the receiver (that of a “simple” RFID tag) is much more limited, while the modulated signal is not necessarily at high modulation depth. And on the other hand, the two tags interact. This inter-tag electromagnetic coupling impacts in particular radiation patterns and impedances, and moreover, it depends on the mutual positions of the two tags, more precisely on their antennas (distance separating them, relative orientation, etc.), which leads to high variability the characteristics of the T2T system (and therefore its performance). In addition, there is the impact of the relative position of the external RF source with the pair of tags, which significantly modifies the characteristics of the retro-modulated signals.
The main challenge of the thesis is to determine a framework that can take into account all the factors (signal, component, circuit and system) impacting T2T communication with the aim of evaluating performance, particularly in terms of communication rate. binary error, a metric conventionally used in the field of telecommunications.
Keywords: Backscattering, passive tags, tag to tag communications, UHF RFID
Speaker: Alessandro Renzaglia (CR Inria, Chroma)
Date: 13/12/2022
Time: 12h15
Place: Amphi Chappe/Lamarr
Title: Cooperative Exploration for 3D Reconstruction with Multiple Aerial Robots
Abstract: Autonomous exploration of unknown environments is a fundamental task in many robotics applications, such as map reconstruction, search and rescue operations, and inspection tasks. For this reason, it is a widely studied problem and several efficient approaches, for both single and multi-robot systems, have been proposed over the years. However, most of the existing solutions focus on 2D areas, while complex 3D environments still present several problems to be solved. In this talk, I will present some of the challenges of exploring 3D environments with a fleet of cooperating aerial vehicles and discuss different ways to quantify the expected new information contained in unexplored portions of the map and to take into account potential redundancies in the observations. Finally, I will briefly discuss the case, common in inspection tasks, where not all areas to explore are equally informative, but some regions have a higher priority and introduce a search dimension to the classical exploration task.
Bio: Alessandro Renzaglia is a research faculty member in the Chroma team at Inria Lyon / CITI Lab. He received his M.Sc. degree in Physics from the University of Rome La Sapienza, Italy, and his Ph.D. degree in Computer Science from the University of Grenoble, France. Successively he has been Postdoctoral Researcher with the Computer Science & Engineer Department at the University of Minnesota, Minneapolis, USA, and later with the Laboratory for Analysis and Architecture of Systems (LAAS), Toulouse, France, in the Robotics and Interactions group, before to join the Chroma team. His main research interests include multi-robot systems, path planning, and optimization.
Title: Reconciling LTI filters and their implementations
Date and Place: 12h15 Tuesday 08/11/2022 in Amphi Hedy Lamarr/Chappe
Speaker: Anastasia Volkova (Univ. Nantes) and Florent de Dinechin (CITI)
Abstract:
Linear time-invariant (LTI) filters are widely used in digital signal processing (DSP). Such filters can be designed out of a frequency specification (amplify some frequency bands, attenuate others), and a wide body of techniques exist to transform such a specification into an actual implementation consisting of additions and multiplications. The linearity property (the L of LTI) is essential at all the steps of this design process. However, actual implementations in hardware or software cannot be linear, due to the rounding of intermediate results: rounding is necessary to keep the result of a multiplication on the same number of bits as its inputs. But rounding is not linear, for instance the function that rounds a real to the nearest integer is not linear. So implementations of LTI filters are actually not linear, and this loss of linearity destroys in principle most mathematical foundations on which they are built. The workaround found by the DSP community so far is quite simple: ignore the problem, and hope for the best. Most of the times it works, and indeed your mobile phone is full of such filters. When it doesn’t, strange (and sometimes catastrophic) things will happen, and the community has devised all sorts of tricks and patches to evade them.
This talk will first present a gentle (but incomplete) introduction to LTI filters, their design, and the issue of non-linearity. It will then introduce a simple formalization that reconciles LTI filters and their
implementations. An additional benefit of this unified view is that filter design and implementation becomes a well-formed single global optimisation problem. The talk will conclude with the latest developments towards solving this problem.
Bio:
Anastasia Volkova est maître de conférences à l’Université de Nantes et membre de l’équipe OGRE au LS2N. Avant de commencer à Nantes en 2019, elle a été chercheuse postdoctorale à Intel San Diego, au Max-Plank Institute à Saabrucken, et à l’Inria à Lyon. Dans sa recherche elle se focalise sur des problématiques de précision finie dans des applications numériques, notamment l’analyse d’erreurs, mais aussi sur le compromis entre la précision et la performance. Elle s’intéresse en particulier à la conception et à l’implémentation logicielle ou matérielle des filtres LTI avec garantie de qualité numérique, et à l’optimisation des ressources matérielles, e.g. sur FPGA.
Florent de Dinechin est professeur à l’INSA-Lyon après un doctorat de l’Université of Rennes-1 en 1997, un post-doctorat à Imperial College à Londres, et un premier poste à l’École Normale Supérieure de Lyon. Il s’intéresse à l’arithmétique des ordinateurs dans ses aspects mathématiques, matériels et logiciels, et particulièrement aux fonctions élémentaires, à la virgule flottante, et à l’arithmétique pour les FPGA.